Constraints on perturbative and non perturbative completions

Yu-tin Huang
w
N. Arkani-Hamed, M. Bianchi, A. Guerrieri, C-J Lee, T. Z. Huang, C. Wen

National Taiwan University

2016 Sept 21, KIAS Autumn Symposium on String Theory

Preulde

Our world up to now looks perturbative (S-matrix exists)

What can we expect in the UV?

- Continues to be perturbative, with IR degrees of freedom still present in the UV (Four fermi \rightarrow Electro Weak) S-matrix exists
- Becomes non-perturbative, with IR degrees of freedom still present in the UV (Quantum Gravity) S-matrix may exists
- Becomes non-perturbative, with IR degrees of freedom emerging as bound state (Pions \rightarrow QCD) S-matrix exists
- Becomes a CFT S-matrix does not exists, even non-lagrangian

Preulde

Our world up to now looks perturbative (S-matrix exists)

What can we expect in the UV?

- Continues to be perturbative, with IR degrees of freedom still present in the UV

Low energy N^{3} n interactions, perturbative completion is highly constrained

- Becomes a CFT:

Vacuum manifold \rightarrow spontaneous symmetry breaking \rightarrow Goldstone bosons (EFT) S-matrix does exists

What is perturbative completion?

- The UV degrees of freedom appears while the theory is still weakly coupled
- The S-matrix only have poles, no branch cuts

- The new degrees of freedom (glue balls and mesons in large N YM)
- The high energy fixed angle scattering is improved

General solution:

$$
M(s, t)=\frac{n(s, t)}{s t u} \rightarrow \frac{1}{s t u} f\left(s, t, m_{i}\right) \equiv \frac{1}{s t u} \frac{n^{\prime}\left(s, t, m_{i}\right)}{\prod_{i=1}^{\infty}\left(s-m_{i}^{2}\right)\left(t-m_{i}^{2}\right)\left(u-m_{i}^{2}\right)}
$$

But locality requires

absence of singularity
All double poles must have no residue

$$
\begin{array}{rll}
s=a, t=b & \rightarrow & n^{\prime}(a, b)=0 \\
s=a, u=b & \rightarrow & n^{\prime}(a,-a-b)=0 \\
s=a, t=b & \rightarrow & n^{\prime}(-a-b, b)=0
\end{array}
$$

$n^{\prime}\left(s, t, m_{i}\right)$ is over constrained bounded polynomial
Any system with low energy N^{3} interactions can only be completed with an infinite tower

What can we expect?

- As $s \rightarrow \infty$, for $t<0$ causality requires Camanho, Edelstein, Maldacena, Zhiboedov

$$
\left.M(s, t)\right|_{s \rightarrow \infty} \sim s^{2+\alpha(t)}, \alpha(t)<0
$$

- For $s, t \gg 0$ the amplitude behaves as Caron-Huot, Komargodski, Sever, Zhiboedov

$$
\left.M(s, t)\right|_{s \rightarrow \infty} \sim s^{j(t)}, \quad j(t) \sim t
$$

- For gravity, at low energies we have

$$
M\left(h_{1}^{-}, h_{2}^{-}, h_{3}^{+}, h_{4}^{+}\right)=\frac{\langle 12\rangle^{4}[34]^{4}}{s t u}
$$

We expect

$$
M(s, t)=\langle 12\rangle^{4}[34]^{4} f\left(s, t, m_{i}\right),\left.\quad f\left(s, t, m_{i}\right)\right|_{s \rightarrow \infty} \sim s^{a}
$$

with $a<-2$

- Then, for fixed t^{*}

$$
\begin{aligned}
f\left(s, t^{*}\right) & =\int \frac{d v}{v-s} f\left(v, t^{*}\right) \xlongequal{v-2}+\sim=-\infty \\
& =\left(\sum_{i} \frac{r[t]_{s=m_{i}^{2}}\left(t+2 m_{i}^{2}\right)}{\left(s-m_{i}^{2}\right)\left(s+t+m_{i}^{2}\right)}+\frac{r[t]_{s=0}}{s(-s-t) t}\right)
\end{aligned}
$$

as $s \gg 0$ this is just a polynomial in t, yet must contain poles in t infinite higher spin!

General solution:

$$
M(s, t)=\langle 12\rangle^{4}[34]^{4} f\left(s, t, m_{i}\right)=\langle 12\rangle^{4}[34]^{4} \frac{n(s, t)}{\prod_{i=1}^{\infty}\left(s-m_{i}^{2}\right)\left(t-m_{i}^{2}\right)\left(u-m_{i}^{2}\right)}
$$

Let

$$
n(s, t) \sim \frac{\prod_{\{i, j\}}\left(s+m_{i}^{2}+m_{j}^{2}\right)\left(t+m_{i}^{2}+m_{j}^{2}\right)\left(u+m_{i}^{2}+m_{j}^{2}\right)}{s t u \prod_{i}\left(s-m_{i}^{2}\right)\left(t-m_{i}^{2}\right)\left(u-m_{i}^{2}\right)}
$$

We're done, this is string theory!

Massless residues controlled by the interaction of three massless particles \leftarrow highly constrained!

One only has $R, R^{2} \phi, R^{3}$. This implies that the massless residue, for $s=0$, must be

On the other hand the massless residue of our ansatz is

$$
\left.M(s, t)\right|_{s=0} \sim\langle 12\rangle^{4}[34]^{4} \frac{\prod_{\{i, j\}}\left(m_{i}^{2}+m_{j}^{2}\right)\left(t+m_{i}^{2}+m_{j}^{2}\right)\left(-t+m_{i}^{2}+m_{j}^{2}\right)}{\prod_{i=1}^{\infty}\left(m_{i}^{2}\right)\left(t-m_{i}^{2}\right)\left(t+m_{i}^{2}\right)}
$$

We must have for any two pair of $\{i, j\}$ there exists an m_{k}^{2} such that $m_{i}^{2}+m_{j}^{2}=m_{k}^{2}$

$$
m_{i}^{2}=\frac{1}{\alpha^{\prime}}\{1,2,3, \cdots\}
$$

$$
m_{i}^{2}=\frac{1}{\alpha^{\prime}}\{1,2,3, \cdots\}
$$

We thus find a simple solution:

$$
M(s, t)=\frac{\langle 12\rangle^{4}[34]^{4}}{s t u} \prod_{i=1}^{\infty} \frac{(s+i)(t+i)(u+i)}{(s-i)(t-i)(u-i)}=\langle 12\rangle^{4}[34]^{4} \frac{\Gamma[1-t] \Gamma[1-s] \Gamma[1-u]}{\Gamma[1+t] \Gamma[1+s] \Gamma[1+u]}
$$

This is nothing but the closed superstring amplitude!

In fact this is the universal piece in all perturbative string completion:

$$
\begin{aligned}
\text { Super } f(s, t) & =\frac{\Gamma[1-s] \Gamma[1-u] \Gamma[1-t]}{\Gamma[1+s] \Gamma[1+u] \Gamma[1+t]}\left(\frac{-1}{s t u}\right) \\
\text { Heterotic } f(s, t) & =\frac{\Gamma[1-s] \Gamma[1-u] \Gamma[1-t]}{\Gamma[1+s] \Gamma[1+u] \Gamma[1+t]}\left(\frac{-1}{s t u}+\frac{1}{s(1+s)}\right) \\
\text { Bosonic } f(s, t) & =\frac{\Gamma[1-s] \Gamma[1-u] \Gamma[1-t]}{\Gamma[1+s] \Gamma[1+u] \Gamma[1+t]}\left(\frac{-1}{s t u}+\frac{2}{s(1+s)}-\frac{t u}{s(1+s)^{2}}\right)
\end{aligned}
$$

Each additional term corresponds to the presence of $R^{2} \phi, R^{3}$.

Does this mean perturbative string is the only solution?

Not yet

Consider the following deformation:
$\frac{\Gamma[-s] \Gamma[-t] \Gamma[-u]}{\Gamma[1+s] \Gamma[1+t] \Gamma[1+u]}\left(1+\epsilon \frac{s t u}{(s+1)(t+1)(u+1)}\right)$

Consistent for $0<\epsilon<1$!

Does this mean perturbative string is the only solution?

Not yet

Consider the following deformation:

$$
\frac{\Gamma[-s] \Gamma[-t] \Gamma[-u]}{\Gamma[1+s] \Gamma[1+t] \Gamma[1+u]}\left(1+\epsilon \frac{s t u}{(s+1)(t+1)(u+1)}\right)
$$

Consistent for $0<\epsilon<1$!

We've seen this before:

- In the early days there was the Lovelace-Shapiro model with intercept $\alpha_{0}=\frac{1}{2}$ that gave a consistent four-point amplitude, but no n-pt generalisation was found
- From a particle theorist point of view, this is bizarre!
- The four-point amplitude tells us the rules for $\mathrm{N}^{3} / 2$ and $\mathrm{N}^{3} \frac{2}{2}$, what could be wrong?

What might have gone wrong?

All massive interactions must be consistent as well. More precisely the three-point interactions must be such that there exiscs four-point)ocal functions that can factorize into these thvee-points. (Exp. This is how massless higher spins are rated out).
More over four-pc is sufficient to answer this?

What we need:
A useful way of invariantly parameterize all possible massive higher. spin interactions. \rightarrow 4-D Massive Spinor Heliciry

Lorentz group $S U(2) \times \underbrace{S U(2) \quad \text { Identify with } S U(2) ~}$ Jitcle group.

What might go wrong: At high E Jimic, the interactions are effectively massless. The only thing that are allowed to survive must be the consistent massless interactions which are already beaten to death!

Massive Interactions Arkani-Hamed, Huang, Y-T
(1) States : $\epsilon^{(\mu \nu \cdots \rho)} \rightarrow k_{\mu} \epsilon^{\mu \nu \cdots \rho}=\epsilon_{\mu}^{\mu \nu \cdots \rho}=0$
on-shell states are represented as SUC2) Irreps

$$
\varepsilon^{\alpha p}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

All states can be represented as symmetric tensors $=$ of $\left.\operatorname{SU}(2) \quad\left(K^{\alpha \dot{\alpha}}=\lambda^{\alpha} \lambda^{2}+\right\}^{\alpha} \hat{\eta}^{\nu}\right)$

$$
\left.\left.\left.\epsilon^{(t) \alpha \beta}=\right\}^{\alpha}\right\}^{\beta} \quad \epsilon^{(0) \alpha \beta}=\lambda^{\alpha} T^{\beta}+\lambda^{\beta}\right\}^{\alpha} \quad \epsilon^{(-)}=\lambda^{\alpha} \lambda^{\beta}
$$

(2) Interactions:

$$
\begin{aligned}
& V^{h_{1} h_{2}}\left(\alpha_{1} \cdots \alpha_{2 L}\right) \quad \sim \tilde{\lambda}_{1} \cdots \lambda_{1} \overbrace{\lambda_{2} \cdots \lambda_{2}}^{[12]}{ }^{L_{\text {t }} h_{1}+h_{2}}
\end{aligned}
$$

Exp:

$$
\begin{aligned}
& V_{\substack{h_{1} h_{2}\left(\alpha_{1} \cdots \alpha_{2 L}\right) \\
2 \text {-massless } 1 \text { massive }}} \sim \overbrace{\lambda_{1} \cdots \lambda_{1}}^{\left(L+h_{1}-h_{2}\right)} \overbrace{\lambda_{2} \cdots \lambda_{2}}^{\left(L+h_{2}-h_{1}\right)}{ }_{[12]}^{L}]_{1}^{L}+h_{1}+h_{2} \\
& L=1 \quad h_{1}=+1 \quad h_{2}=+1 \\
& V_{\alpha_{1} \alpha_{2}}^{11} \sim \lambda_{1 \alpha_{1}} \lambda_{2 \alpha_{2}}[12]^{3} \\
& \text { nassive-spin-1 } \\
& \text { antisymmetric } 1 \leftrightarrow 2
\end{aligned}
$$

A massive vector cannot couple to two identical vectors (Tangs Theorem)

2 gravitons can consistently couple to massive spin-2

What spins can be charged? (A one massless two massive exp)

$\sim\left(\lambda_{1 \alpha} \lambda_{1 \rho}+\operatorname{an} x \varepsilon_{\alpha \beta}\right)$ we can consider high energy Jimir renormalizable interaction only allows for $\left(-1-+\frac{1}{2}\right)$ but not $\left(-\frac{1}{2}-\frac{1}{2}\right)$
 fixed $a=-1$

$$
\begin{aligned}
& \left\{a_{1 \alpha} \lambda_{1 p} \lambda_{1 r} \lambda_{18}+b\left[\lambda_{1 \alpha} \lambda_{1 r} \epsilon_{\beta)_{\delta} \delta}\right]+c \epsilon_{\text {orr }} \epsilon_{\phi \delta}\right\} \text { Recall that } \\
& \text { (-.-) corresponds } \\
& \text { to } F^{3} \text { and } \\
& \text { (- - 0) corresponds } \\
& \text { to } F^{2} \phi
\end{aligned}
$$

Lesson. massive interactions are constrained by consistency of mass. Jess interactions.

* As one move to massive spin l we will have $\lambda^{2 l}$ term! $\downarrow_{\text {(some thing) }}^{\text {goes along }}$

Minimal coupling leads to the following 4 -pt amp as $E \rightarrow \infty$

$$
\begin{array}{ll}
L=0 & A_{4}=\frac{\left.\langle 2| P_{4}-P_{1} \mid 3\right]^{2}}{\left(s-m^{2}\right)\left(U-m^{2}\right)} \\
L_{1}=\frac{1}{2} & A_{4}=\frac{\left.\langle 2| P_{4}-P_{1} \mid 3\right]\langle 2 \mid\rangle[43]}{\left(s-m^{2}\right)\left(u-m^{2}\right)} \\
L=1 & A_{4}=\frac{\langle 21\rangle^{2}[43]^{2}}{\left(s-m^{2}\right)\left(u-m^{2}\right)}
\end{array}
$$

$$
\left.\left.L=\frac{3}{2} \quad A_{4}=\frac{1}{\left(5-m^{2}\right)\left(u-m^{2}\right)}\langle 2| P_{4}-P_{1} \right\rvert\, 3\right]^{2} \frac{\langle+2\rangle^{3}[23]^{3}}{m^{2}}
$$

to taking $m \rightarrow 0$
Charged $s>1$ states cannot be fundamental particles
\rightarrow (a) bound state (b) degeneracy to the spectrum. (Jo be continued)

For non-perturbative completion, what can one possibly say?

In a EFT we have an infinite set of irrelevant operators

$$
\mathcal{L}_{E F T}=\mathcal{L}_{\text {marginal }}+\sum_{i} c_{i} \mathcal{O}_{i}(\partial, \phi)
$$

In general $c_{i} \rightarrow c_{i}(g, N)$

- For non-lagrangian theories c_{i} is simply a number!
- For theories with S-duality, $c_{i}(g, N)$ is constrained
- With SUSY some c_{i} are determined exactly

How much constraint can we impose in the IR on $\mathcal{L}_{E F T}$?

If the low lying degrees of freedom are $\mathrm{GB} \rightarrow$ non-linearly symmetry

- How do we use the non-linear symmetry to constrain the EFT?
- Is there a systematic way to proceed with arbitrary symmetry breaking (internal and spacetime)?
- Are non-linear symmetries protected against quantum corrections?

Soft theorems

The D.O.F. for $\mathcal{L}_{E F T}$ are Goldstone bosons \rightarrow Adler's zero

$$
\left.M_{n}\left(\pi_{1} \cdots\right)\right|_{p_{1} \rightarrow 0}=0
$$

The $\mathrm{U}(1)$ goldstone bosons are derivatively coupled: $\mathcal{L}(\partial \phi)$ (Non-abelian extension see I. Low 14)

Soft theorems

Space-time symmetry breaking are different

- The generators have non-trivial commutator with P

$$
[P, K] \sim D
$$

The Goldstone modes of the broken generators are derivatively related One dilaton

- For sCFT, there will be associated broken internal symmetries pions

There are multiple Goldstone modes for spontaneous space-time symmetry breaking

What does this imply for the effective action?

Soft theorems

Ward identity

$$
\partial_{\mu}\left\langle J^{\mu}(x) \phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right\rangle=-\sum_{i} \delta\left(x-x_{i}\right)\left\langle\phi\left(x_{1}\right) \cdots \delta \phi\left(x_{i}\right) \cdots \phi\left(x_{n}\right)\right\rangle
$$

Spontenous symmetry breaking implies $J^{\mu}|0\rangle=p^{\mu} \mid$ phys \rangle

- LHS: performing LSZ reduction on $i=1, \cdots,\left.n \rightarrow M_{n}\left(\pi_{1} \cdots\right)\right|_{p_{1} \rightarrow 0}=0$
- RHS: $\left\{\begin{array}{l}=0 \text { if } \delta \phi \neq \mid \text { phys }\rangle \\ \neq 0 \text { if } \delta \phi=|p h y s\rangle\end{array}\right.$

Conventional spontaneous symmetry breaking: $\delta \phi=$ constant hence Adler's zero

Soft theorems

Spontaneous broken dilation and conformal boost generator leads to single dilaton,

$$
[K, D] \sim K
$$

The dilaton transforms linearly under the broken generator \rightarrow non-vanishing soft-limits:
Boels, Wormsbecher, Y-t Wen, Di Vecchia, Marotta, Mojaza, Nohle

$$
\left.M_{n}\right|_{p_{n} \rightarrow 0}=\left(\mathcal{S}_{n}^{(0)}+\mathcal{S}_{n}^{(1)}\right) M_{n-1}+\mathcal{O}\left(p_{n}^{2}\right)
$$

$\left(\mathcal{S}_{n}^{(0)}, \mathcal{S}_{n}^{(1)}\right)$ are universal soft functions

$$
\begin{aligned}
\mathcal{S}_{n}^{(0)} & =\sum_{i=1}^{n-1}\left(p_{i} \cdot \frac{\partial}{\partial p_{i}}+\frac{d-2}{2}\right)-d \\
\mathcal{S}_{n}^{(1)} & =p_{n}^{\mu} \sum_{i=1}^{n-1}\left[p_{i}^{\nu} \frac{\partial^{2}}{\partial p_{i}^{\nu} \partial p_{i}^{\mu}}-\frac{p_{i \mu}}{2} \frac{\partial^{2}}{\partial p_{i_{\nu}} \partial p_{i}^{\nu}}+\frac{d-2}{2} \frac{\partial}{\partial p_{i}^{\mu}}\right] .
\end{aligned}
$$

Soft theorems

There's more! In general CFTs with scalar moduli space has "flavor" symmetry, which will be spontaneously broken along with conformal symmetry \rightarrow pions

Exp: $\mathcal{N}=4$ SYM on Coulomb branch, 6 massless scalars (1 dilaton $\varphi, 5$ $\left.\mathrm{SO}(6) \rightarrow \mathrm{SO}(5) \mathrm{GBs} \phi^{\prime}\right)$

$$
\left.A_{n}\left(\phi_{1}, \cdots, \phi_{n}^{\prime}\right)\right|_{p_{n} \rightarrow 0}=\sum_{i} A_{n-1}\left(\cdots, \delta^{\prime} O, \cdots\right)+\mathcal{O}\left(p_{n}^{1}\right)
$$

where $\delta^{\prime} \varphi=\phi^{\prime}$ and $\delta^{\prime} \phi^{J}=-\delta^{J} \varphi$.

Soft theorems

The soft theorems should be respected

- In the UV where massive D.o.F are present
- In the IR where massive D.o.F integrated away perturbatively
- In the IR where massive D.o.F integrated away non-perturbatively

Let's check

Perturbative Verifications

The one-loop effective action of $\mathcal{N}=4$ SYM on the Coulomb branch, up to six fields

Derived from the integrand of SYM in D-dimensions (scalars: $\epsilon \cdot k_{i}=0, \epsilon \cdot \ell=m$ for φ, $\epsilon \cdot \ell=0$ for ϕ^{\prime})

$$
\mathcal{L}_{1-\text { loop }}^{\mathrm{SU}(4) \text { singlet }}=\frac{g^{4} N}{32 m^{4} \pi^{2}}\left(\mathcal{O}_{F^{4}}+\frac{\mathcal{O}_{D^{4} F^{4}}}{2^{3} \times 15 m^{4}}-\frac{2 \mathcal{O}_{D^{2} F^{6}}}{15 m^{6}}+\frac{\mathcal{O}_{D^{4} F^{6}}}{2^{3} \times 21 m^{8}}-\frac{\mathcal{O}_{D^{6} F^{6}}}{2 \times 15^{2} m^{10}}+\cdots\right)
$$

$$
\begin{aligned}
& \mathcal{L}_{1-\text { loop }}^{\mathrm{Sp}(4)}=\frac{\partial^{4} \varphi^{4}}{16 m^{4}}+\frac{\partial^{8} \varphi^{4}}{960 m^{8}}+\frac{\partial^{4} \varphi^{5}}{4 m^{6}}+\frac{\partial^{8} \varphi^{5}}{480 m^{10}}-\frac{5 \partial^{4} \varphi^{6}}{4 m^{6}} \\
& \quad-\frac{\partial^{8} \varphi^{6}}{480 m^{10}}+\frac{\partial^{10} \varphi^{6}}{2^{10} 3^{5} m^{12}}+\frac{\partial^{12} \varphi^{6}}{2^{11} 3^{2} m^{14}}+\frac{\partial^{4} \varphi^{2} \phi^{\prime 2}}{8 m^{4}}-\frac{5 \partial^{4} \varphi^{2} \phi^{\prime 4}}{4 m^{6}}+\frac{\partial^{4} \varphi^{4} \phi^{\prime 2}}{4 m^{6}}+\ldots
\end{aligned}
$$

Perturbative Verifications

$$
\begin{aligned}
& \partial^{4} \varphi^{m}: \sum_{i<j} s_{i j}^{2}, \quad \partial^{8} \varphi^{4}:\left(\sum_{i<j} s_{i j}^{2}\right)^{2}, \quad \partial^{8} \varphi^{5}:\left(\sum_{i<j} s_{i j}^{2}\right)^{2}, \\
& \partial^{8} \varphi^{6}:-\frac{b_{1}^{(4)}}{6}+\frac{5 b_{2}^{(4)}}{768}+\frac{b_{3}^{(4)}}{36}-\frac{3 b_{4}^{(4)}}{2}, \\
& \partial^{10} \varphi^{6}:-\frac{48 b_{1}^{(5)}}{7}+\frac{36}{35} b_{2}^{(5)}+\frac{108}{7} b_{3}^{(5)}+\frac{114}{35} b_{4}^{(5)}+\frac{60}{7} b_{5}^{(5)}, \\
& \partial^{12} \varphi^{6}: \frac{433}{1350} b_{1}^{(6)}-\frac{58}{2025} b_{2}^{(6)}+\frac{20}{9} b_{3}^{(6)}+\frac{117}{35} b_{4}^{(6)}-\frac{184}{945} b_{5}^{(6)}, \\
& -\frac{74}{45} b_{6}^{(6)}+\frac{334}{315} b_{7}^{(6)}+\frac{177}{35} b_{8}^{(6)}-\frac{64}{63} b_{9}^{(6)}+\frac{104}{105} b_{10}^{(6)} \\
& \partial^{4} \varphi^{2} \phi^{2}: s_{12}^{2}-s_{13}^{2}-s_{23}^{2}, \quad \partial^{4} \varphi^{2} \phi^{4}: b_{1, S_{2} \times S_{4}}^{(2)}-b_{2, S_{2} \times S_{4}}^{(2)}+b_{3, S_{2} \times S_{4}}^{(2)}-\frac{8}{5} b_{4, S_{2} \times S_{4}}^{(2)} \\
& \partial^{4} \varphi^{4} \phi^{2}: b_{1, S_{2} \times S_{4}}^{(2)}-b_{2, S_{2} \times S_{4}}^{(2)}+b_{3, S_{2} \times S_{4}}^{(2)}-8 b_{4, S_{2} \times S_{4}}^{(2)} \\
& b_{1}^{(4)}=s_{12}^{4}+\mathcal{P}_{6}, \quad b_{2}^{(4)}=\left(s_{12}^{2}+\mathcal{P}_{6}\right)^{2}, \quad b_{3}^{(4)}=s_{12}^{2} s_{13}^{2}+\mathcal{P}_{6}, \\
& b_{4}^{(4)}=s_{123}^{4}+\mathcal{P}_{6}, \quad b_{1}^{(5)}=s_{12}^{5}+\mathcal{P}_{6}, \quad b_{2}^{(5)}=s_{12}^{2} s_{123}^{3}+\mathcal{P}_{6}, \\
& b_{3}^{(5)}=s_{12}^{2} s_{13}^{3}+\mathcal{P}_{6}, \quad b_{4}^{(5)}=s_{12}^{2} s_{34}^{2}+\mathcal{P}_{6}, \quad b_{5}^{(5)}=s_{123}^{5}+\mathcal{P}_{6} \\
& b_{1}^{(6)}=s_{12}^{6}+\mathcal{P}_{6}, \quad b_{2}^{(6)}=s_{123}^{6}+\mathcal{P}_{6}, \quad b_{3}^{(6)}=s_{12}^{4} s_{13}^{2}+\mathcal{P}_{6}, \\
& b_{4}^{(6)}=s_{12}^{4} s_{34}^{2}+\mathcal{P}_{6}, \quad b_{5}^{(6)}=s_{12}^{3} s_{13}^{3}+\mathcal{P}_{6}, \quad b_{6}^{(6)}=s_{12}^{3} s_{34}^{3}+\mathcal{P}_{6}, \\
& b_{7}^{(6)}=s_{12}^{2} s_{123}^{4}+\mathcal{P}_{6}, \quad b_{8}^{(6)}=s_{14}^{2} s_{123}^{4}+\mathcal{P}_{6}, \quad b_{9}^{(6)}=s_{14}^{4} s_{123}^{2}+\mathcal{P}_{6}, \\
& b_{10}^{(6)}=s_{123}^{2} s_{124}^{2} s_{135}^{2}+\mathcal{P}_{6}, \quad b_{1, S_{2} \times S_{4}}^{(2)}=s_{12}^{2}, \quad b_{2, S_{2} \times S_{4}}^{(2)}=s_{13}^{2}+\mathcal{P}_{\{12 \mid 3456\}} . \\
& b_{3, S_{2} \times S_{4}}^{(2)}=s_{34}^{2}+\mathcal{P}_{\{12 \mid 3456\}}, \quad b_{4, S_{2} \times S_{4}}^{(2)}=s_{12} s_{13}+\mathcal{P}_{\{12 \mid 3456\}}
\end{aligned}
$$

Non-Perturbative Verifications

The instanton effective action of $\mathcal{N}=4$ SYM on the Coulomb branch, Massimo, Morales, Wen

$$
S_{\mathrm{eff}}^{1-\mathrm{inst}}=c^{\prime} \frac{g^{4}}{\pi^{6}} e^{2 \pi \mathrm{i} \tau} \int \frac{d^{4} x d^{8} \theta \sqrt{\operatorname{det}_{4 N} 2 \bar{\Phi}_{A u, B v}}}{\sqrt{\operatorname{det}_{2 N}\left(\Phi^{A B} \bar{\Phi}_{A B}+\frac{1}{g} \overline{\mathcal{F}}+\frac{1}{\sqrt{2} g} \bar{\Lambda}_{A}\left(\Phi^{-1}\right)^{A B} \bar{\Lambda}_{B}\right)_{\dot{\alpha} u, \dot{\beta} v}}} .
$$

The $\mathcal{N}=4$ on-shell superfields can be expanded in terms of the component fields $\left\{\phi^{A B}, \lambda_{\alpha}^{A}, F_{\alpha \beta}^{-}\right\}$. For just the scalars,

$$
\bar{\Phi}_{A B}=\bar{\phi}_{A B}, \quad \bar{\Lambda}_{A \dot{\alpha}}=i \theta^{B \alpha} \partial_{\alpha \dot{\alpha}} \bar{\phi}_{A B}, \quad \overline{\mathcal{F}}_{\dot{\alpha} \dot{\beta}}=\frac{1}{2} \theta^{A \alpha} \theta^{B \beta} \partial_{\alpha \dot{\alpha}} \partial_{\beta \dot{\beta}} \bar{\phi}_{A B}
$$

We obtain simple dilaton effective action

$$
\mathcal{S}_{\text {dilaton }}=\int d^{4} x\left[\left(S_{\mu \nu} S^{\mu \nu}\right)^{2}-S_{\mu \nu} S^{\nu \rho} S_{\rho \sigma} S^{\sigma \mu}\right], \quad S_{\mu \nu}=\frac{\partial_{\mu} \partial_{\nu} \varphi}{\varphi^{2}}-2 \frac{\partial_{\mu} \varphi \partial_{\nu} \varphi}{\varphi^{3}}
$$

Non-Perturbative Verifications

But horrific vertices when expanded around $\varphi \rightarrow v+\varphi$

$$
\begin{align*}
& \nu^{8} \Gamma^{(4)}[\varphi]=\left(\partial_{\mu} \partial_{\nu} \varphi \partial^{\mu} \partial^{\nu} \varphi\right)^{2}-\partial_{\mu} \partial_{\nu} \varphi \partial^{\nu} \partial^{\rho} \varphi \partial_{\rho} \partial_{\tau} \varphi \partial^{\sigma} \partial^{\mu} \varphi \equiv(\partial \partial \varphi \cdot \partial \partial \varphi)^{2}-(\partial \partial \varphi \cdot \partial \partial \varphi \cdot \partial \partial \varphi \cdot \partial \partial \varphi) \tag{A.1}\\
& v^{9} \Gamma^{(5)}[\varphi]=-8 \varphi(\partial \partial \varphi \cdot \partial \partial \varphi)^{2}+8 \varphi(\partial \partial \varphi \cdot \partial \partial \varphi \cdot \partial \partial \varphi \cdot \partial \partial \varphi) \\
& -8(\partial \partial \varphi \cdot \partial \partial \varphi) \partial \varphi \cdot \partial \partial \varphi \cdot \partial \varphi+8 \partial \varphi \cdot \partial \partial \varphi \cdot \partial \partial \varphi \cdot \partial \partial \varphi \cdot \partial \varphi-2(\partial \partial \varphi \cdot \partial \partial \varphi \cdot \partial \partial \varphi \partial \varphi \cdot \partial \varphi) \\
& \text { (A.2) } \\
& v^{10} \Gamma^{(6)}[\varphi]=36 \varphi^{2}(\partial \partial \varphi \cdot \partial \partial \varphi)^{2}-36 \varphi^{2}(\partial \partial \varphi \cdot \partial \partial \varphi \cdot \partial \partial \varphi \cdot \partial \partial \varphi) \\
& +72 \varphi(\partial \partial \varphi \cdot \partial \partial \varphi \cdot \partial \partial \varphi \cdot \partial \partial \varphi) \partial \varphi \cdot \partial \partial \varphi \cdot \partial \varphi-72 \varphi \partial \varphi \cdot \partial \partial \varphi \cdot \partial \partial \varphi \cdot \partial \partial \varphi \cdot \partial \varphi \\
& +18 \varphi(\partial \partial \varphi \cdot \partial \partial \varphi \cdot \partial \partial \varphi)+8(\partial \cdot \partial \partial \varphi \cdot \partial \varphi)^{2}-4 \partial \varphi \cdot \partial \partial \varphi \cdot \partial \partial \varphi \cdot \partial \varphi+3(\partial \partial \varphi \cdot \partial \partial \varphi)(\partial \varphi \partial \varphi)^{2} \tag{A.3}\\
& \left.v^{11} \Gamma^{(7)} \mid \varphi\right]=-120 \varphi^{3}(\partial \partial \varphi \cdot \partial \partial \varphi)^{2}+120 \varphi^{3}(\partial \partial \varphi \cdot \partial \partial \varphi \cdot \partial \varphi \cdot \cdot \partial \partial \varphi) \\
& -360 \varphi^{2}(\partial \partial \varphi \cdot \partial \partial \varphi \cdot \partial \partial \varphi \cdot \partial \partial \varphi) \partial \varphi \cdot \partial \partial \varphi \cdot \partial \varphi+360 \varphi^{2} \partial \varphi \cdot \partial \partial \varphi \cdot \partial \partial \varphi \cdot \partial \partial \varphi \cdot \partial \varphi \\
& -90 \varphi^{2}(\partial \partial \varphi \cdot \partial \partial \varphi \cdot \partial \partial \varphi)-80 \varphi(\partial \varphi \cdot \partial \partial \varphi \cdot \partial \varphi)^{2}+40 \varphi \partial \varphi \cdot \partial \partial \varphi \cdot \partial \partial \varphi \cdot \partial \varphi \\
& -45 \varphi(\partial \partial \varphi \cdot \partial \partial \varphi)(\partial \varphi \partial \varphi)^{2}-10 \partial \varphi \cdot \partial \partial \varphi \cdot \partial \varphi(\partial \varphi \partial \varphi)^{2} \tag{A.4}\\
& v^{12} \Gamma^{(8)}[\varphi]=330 \varphi^{4}(\partial \partial \varphi \cdot \partial \partial \varphi)^{2}-330 \varphi^{4}(\partial \partial \varphi \cdot \partial \partial \varphi \cdot \partial \partial \varphi \cdot \partial \partial \varphi) \\
& +1320 \varphi^{3}(\partial \partial \varphi \cdot \partial \partial \varphi \cdot \partial \partial \varphi \cdot \partial \partial \varphi) \partial \varphi \cdot \partial \partial \varphi \cdot \partial \varphi-1320 \varphi^{3} \partial \varphi \cdot \partial \partial \varphi \cdot \partial \partial \varphi \cdot \partial \partial \varphi \cdot \partial \varphi \\
& +330 \varphi^{3}(\partial \partial \varphi \cdot \partial \partial \varphi \cdot \partial \partial \varphi)+440 \varphi^{2}(\partial \cdot \partial \partial \varphi \cdot \partial \varphi)^{2}-220 \varphi^{2} \partial \varphi \cdot \partial \partial \varphi \cdot \partial \partial \varphi \cdot \partial \varphi \\
& +\frac{495}{2} \varphi^{2}(\partial \partial \varphi \cdot \partial \partial \varphi)(\partial \varphi \partial \varphi)^{2}+110 \varphi \partial \varphi \cdot \partial \partial \varphi \cdot \partial \varphi(\partial \varphi \partial \varphi)^{2}+\frac{15}{4}(\partial \varphi \partial \varphi)^{4} \tag{A.5}\\
& v^{13} \Gamma^{(9)}[\varphi]=-792 \varphi^{5}(\partial \partial \varphi \cdot \partial \partial \varphi)^{2}+792 \varphi^{5}(\partial \partial \varphi \cdot \partial \partial \varphi \cdot \partial \partial \varphi \cdot \partial \partial \varphi) \\
& -3960 \varphi^{4}(\partial \partial \varphi \cdot \partial \varphi \cdot \partial \partial \varphi \cdot \partial \partial \varphi) \partial \varphi \cdot \partial \partial \varphi \cdot \partial \varphi+3960 \varphi^{4} \partial \varphi \cdot \partial \varphi \varphi \cdot \partial \partial \varphi \cdot \partial \partial \varphi \cdot \partial \varphi \\
& -990 \varphi^{4}(\partial \partial \varphi \cdot \partial \partial \varphi \cdot \partial \partial \varphi)-760 \varphi^{3}(\partial \cdot \partial \partial \varphi \cdot \partial \varphi)^{2}+880 \varphi^{3} \partial \varphi \cdot \partial \partial \varphi \cdot \partial \partial \varphi \cdot \partial \varphi \\
& -990 \varphi^{3}(\partial \partial \varphi \cdot \partial \partial \varphi)(\partial \varphi \partial \varphi)^{2}-660 \varphi^{2} \partial \varphi \cdot \partial \partial \varphi \cdot \partial \varphi(\partial \varphi \partial \varphi)^{2}-45 \varphi(\partial \varphi \partial \varphi)^{4} \text {. }
\end{align*}
$$

All soft theorems are satisfied

Constraints on effective action

Using the fact that S-matrix are analytic functions, we start with: Britto, Cachazo, Feng, Witten

$$
A_{n}(0)=\oint_{|z|=0} d z \frac{A_{n}(z)}{z}=-\oint_{|z|=z^{*}} d z \frac{A_{n}(z)}{z}
$$

The constraint from soft-theorems can be utilized via augmented recursion:Cheung,
Kampf, Novotny, Shen, Trnka

$$
A_{n}(0)=\oint_{|z|=0} d z \frac{A_{n}(z)}{z F(z)}=-\oint_{|z|=z^{*}} d z \frac{A_{n}(z)}{z F(z)}-\oint_{|z|=z^{*}} d z \frac{A_{n}(z)}{z F(z)},
$$

Constraints on effective action

Take

$$
A(z)=\left.A\right|_{p_{i} \rightarrow\left(1-z a_{i}\right) p_{i}}, \quad F_{n}(z)=\prod_{i=1}^{n}\left[\left(1-z a_{i}\right)\right]^{d_{i}}
$$

with $\sum_{i} a_{i} p_{i}=0$
$A_{n}(0)=\oint_{|z|=0} d z \frac{A_{n}(z)}{z F(z)}=-\oint_{|z|=z^{*}} d z \frac{A_{n}(z)}{z F(z)}-\oint_{|z|=z^{*}} d z \frac{A_{n}(z)}{z F(z)}$,

The residue of $F(z)$ is determined

$$
A(z) \rightarrow A_{0}+A_{1} q+A_{2} q^{2}+\cdots A_{d} q^{d-1}
$$

where $q=\left(1-z a_{i}\right) p_{i}$

Constraints on effective action

The residue of $F(z)$ is determined

$$
A(z) \rightarrow A_{0}+A_{1} q+A_{2} q^{2}+\cdots A_{d} q^{d-1}
$$

Since for the pure dilaton sector

$$
\left.M_{n}\right|_{p_{n} \rightarrow 0}=\left(\mathcal{S}_{n}^{(0)}+\mathcal{S}_{n}^{(1)}\right) M_{n-1}+\mathcal{O}\left(p_{n}^{2}\right)
$$

we have $d=2$.
The pure dilaton amplitude can be constructed using recursion

$$
A_{n}(0)=\oint_{|z|=0} d z \frac{A_{n}(z)}{z \prod_{i}\left(1-z a_{i}\right)^{2}}
$$

The denominator $\sim z^{2 n}$, while $A_{n}(z) \sim z^{2 m}$ for order $\partial^{2 m} \rightarrow$ we need $n>m$

Constraints on effective action

The pure dilaton sector is highly constrained:

$s^{n} \backslash$ \# of points	4	5	6	7	8	\ldots
2	\times	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
3	\times	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
4	\times	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
5	\checkmark	\times	\checkmark	\checkmark	\checkmark	\checkmark
6	\checkmark	\checkmark	\times	\checkmark	\checkmark	\checkmark
7	\checkmark	\checkmark	\checkmark	\times	\checkmark	\checkmark
8	\checkmark	\checkmark	\checkmark	\checkmark	\times	\checkmark
\vdots	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots

At s^{n}, the EFT is determined up to coefficients for operators $\partial^{2 n} \varphi^{n}$

SUSY Constraints on effective action

Maximal SUSY is known to give exact results:

- $s^{2}: F^{4}$ operator one-loop exact $\lambda=\left(\frac{g^{4} N}{8 \pi^{2} m^{4}}\right)$
- For the pure field-strengths Chen, $\mathrm{Y}-\mathrm{t}$, Wen

$$
\mathcal{L}_{\text {eff }}=\sum_{p, q=1} c_{0}^{p, q} \frac{\left(F_{+}^{2}\right)^{p}\left(F_{-}^{2}\right)^{q}}{\left(M^{2}\right)^{2(p+q-1)}}+\sum_{m=1} \sum_{p, q=1} c_{m}^{p, q} \frac{D^{2 m}\left(F_{+}^{2}\right)^{p}\left(F_{-}^{2}\right)^{q}}{\left(M^{2}\right)^{2(p+q-1)+m}}+\cdots
$$

There are no local susy matrix elements that encode $F_{-}^{2} F_{+}^{n-2} \rightarrow$ must have zero coefficient

One obtains an exact recursion formula

$$
c_{0}^{1, q}=4^{q-1}\left(c_{0}^{1,1}\right)^{q}
$$

SUSY Constraints on effective action

Assume $D=4$ maximal susy

$$
\begin{aligned}
& \mathcal{A}_{4}=\delta^{8}(Q) \frac{[12]^{2}}{\langle 34\rangle^{2}} \sum_{k} P_{4}^{(k)}\left(s_{i j}\right), \\
& \mathcal{A}_{5}=v \delta^{8}(Q) \frac{m_{1,2,3}^{(1)} m_{1,2,3}^{(2)}+m_{1,2,3}^{(3)} m_{1,2,3}^{(4)}}{\langle 45\rangle^{2}} \sum_{k} P_{5}^{(k)}\left(s_{i j}\right)
\end{aligned}
$$

- $s^{2}: F^{4}$ operator one-loop exact $\lambda=\left(\frac{g^{4} N}{8 \pi^{2} m^{4}}\right)$
- $s^{3}: A_{4}^{(3)}=A_{5}^{(3)}=0$, and the first non-zero would be A_{6}

$$
\begin{aligned}
A_{6}^{(3)} & =a_{1}\left(s_{12}^{3}+\mathcal{P}_{6}\right)+a_{2}\left(s_{123}^{3}+\mathcal{P}_{6}\right) \\
& +\lambda^{2}\left(\left(s_{12}^{2}+s_{13}^{2}+s_{23}^{2}\right) \frac{1}{s_{123}}\left(s_{45}^{2}+s_{46}^{2}+s_{56}^{2}\right)+\mathcal{P}_{6}\right)
\end{aligned}
$$

soft theorem fixes $a_{1}=0, \quad a_{2}=-\lambda^{2} \rightarrow A_{n}^{(3)}$ is two-loop exact
Up to six-derivatives, the effective action is identical to DBI in $A d S_{5} \times S_{5}$

SUSY Constraints on effective action

- s^{4} : Recursion determines all $n>4$ in terms of the four-point

$$
\sum_{m \leq 8} \mathcal{L}_{\partial^{m} \phi^{n}}=\delta_{m, 8} C_{4}^{(2)}(g, N) \mathcal{L}_{\partial^{8} \phi^{n}}^{\ell=1}+\sum_{m \leq 8} \mathcal{L}_{\partial^{m} \phi^{n}}^{\mathrm{DBI}},
$$

- s^{5} :

$$
P_{4}^{(3)}\left(s_{i j}\right)=c_{4}^{(3)}(g, N) \times\left(s_{12}^{3}+\mathcal{P}_{4}\right), \quad P_{5}^{(3)}\left(s_{i j}\right)=c_{5}^{(3)}(g, N) \times\left(s_{12}^{3}+\mathcal{P}_{5}\right) .
$$

Soft theorem determines $c_{5}^{(3)}(g, N)=-c_{4}^{(3)}(g, N)$

$$
\mathcal{L}_{\partial^{10} \phi^{n}}=c_{4}^{(3)}(g, N) \mathcal{L}_{\partial^{10} \phi^{n}}^{\ell=1}+\lambda \times c_{4}^{(2)}(g, N) \mathcal{L}_{\partial^{10} \phi^{n}}^{\ell=2}+\mathcal{L}_{\partial^{10} \phi^{n}}^{\mathrm{DBI}},
$$

Maximal SUSY fixes the effective action up to 10 derivatives in terms of two unknown coefficients

Scale vs Conformal symmetry

$$
\begin{gathered}
\left.M_{n}\right|_{p_{n} \rightarrow 0}=\left(\mathcal{S}_{n}^{(0)}+\mathcal{S}_{n}^{(1)}\right) M_{n-1}+\mathcal{O}\left(p_{n}^{2}\right), \\
\mathcal{S}_{n}^{(0)}=\sum_{i=1}^{n-1}\left(p_{i} \cdot \frac{\partial}{\partial p_{i}}+\frac{d-2}{2}\right)-d, \leftarrow \text { Dilatation } \\
\mathcal{S}_{n}^{(1)}=p_{n}^{\mu} \sum_{i=1}^{n-1}\left[p_{i}^{\nu} \frac{\partial^{2}}{\partial p_{i}^{\nu} \partial p_{i}^{\mu}}-\frac{p_{i \mu}}{2} \frac{\partial^{2}}{\partial p_{i_{\nu}} \partial p_{i}^{\nu}}+\frac{d-2}{2} \frac{\partial}{\partial p_{i}^{\mu}}\right] \leftarrow \text { Conformal Boost. }
\end{gathered}
$$

"To what extent does the sub-leading soft theorem, due to broken conformal boost symmetry, follow from the leading behaviour stemming from broken dilation symmetry?"

- To all order in derivative coupling, the five point matrix elements satisfying leading soft automatically satisfies subleading soft theorems.
- At s^{3}, we can construct a local polynomial $s_{12}^{3}-2 s_{12} s_{13} s_{23}+\mathcal{P}_{6}$ at six-points, which vanish at leading, but no subheading soft-limit not conformal

$$
L=(d \phi)^{2}+(d v)^{2}+g \phi^{2} v^{\mu} v_{\mu}
$$

Current and future directions

- Detailed study of consistent massive interactions, under unitarity+locality
- S-matrix boot-strap: for $s, t<0$

$$
\sum_{i, L} \frac{c_{i, L}^{2} P_{L}(\cos \theta)}{s-m_{i}^{2}}=\sum_{i, L} \frac{c_{i, L}^{2} P_{L}(\cos \theta)}{t-m_{i}^{2}}
$$

can we prove that the spectrum can be organised as $m_{i}^{2}=\frac{i}{\alpha_{j}^{\prime}}$

- Mysteries for double soft-limits, $\left[G_{i}, G_{j}\right]=f_{i j}{ }^{k} G_{k}$:

DBI is a truncation for conformal DBI, yet two soft theorems are completely different.

- Are soft theorems valid for UV divergences ? First one-loop 6-pt test agrees for A-V theory
- What rules out scale but not-conformal invariant theories (identified operators that signal non-unitarity in UV)

