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Preulde

Our world up to now looks perturbative (S-matrix exists)

What can we expect in the UV?

• Continues to be perturbative, with IR degrees of freedom still present in the UV (
Four fermi→ Electro Weak) S-matrix exists

• Becomes non-perturbative, with IR degrees of freedom still present in the UV (
Quantum Gravity) S-matrix may exists

• Becomes non-perturbative, with IR degrees of freedom emerging as bound state (
Pions→ QCD) S-matrix exists

• Becomes a CFT S-matrix does not exists, even non-lagrangian



Preulde

Our world up to now looks perturbative (S-matrix exists)

What can we expect in the UV?

• Continues to be perturbative, with IR degrees of freedom still present in the UV

Low energy interactions, perturbative completion is highly constrained
• Becomes a CFT:

Vacuum manifold→ spontaneous symmetry breaking→ Goldstone bosons (EFT)
S-matrix does exists



What is perturbative completion?

• The UV degrees of freedom appears while the theory is still weakly coupled
• The S-matrix only have poles, no branch cuts

• The new degrees of freedom (glue balls and mesons in large N YM)

• The high energy fixed angle scattering is improved



General solution:

M(s, t) =
n(s, t)

stu
→

1
stu

f (s, t ,mi ) ≡
1

stu
n′(s, t ,mi )∏∞

i=1(s −m2
i )(t −m2

i )(u −m2
i )

But locality requires

f (s, t ,mi )

∣∣∣∣
s=m2

i

→

absence of singularity 

All double poles must have no residue

s = a, t = b → n′(a, b) = 0

s = a, u = b → n′(a,−a−b) = 0

s = a, t = b → n′(−a−b, b) = 0

n′(s, t ,mi ) is over constrained bounded polynomial

Any system with low energy interactions can only be completed with an infinite
tower



What can we expect?

• As s →∞, for t < 0 causality requires Camanho, Edelstein, Maldacena, Zhiboedov

M(s, t)|s→∞ ∼ s2+α(t), α(t) < 0

• For s, t >> 0 the amplitude behaves as Caron-Huot, Komargodski, Sever, Zhiboedov

M(s, t)|s→∞ ∼ sj(t), j(t) ∼ t

• For gravity, at low energies we have

M(h−1 , h
−
2 , h

+
3 , h

+
4 ) =

〈12〉4[34]4

stu
We expect

M(s, t) = 〈12〉4[34]4f (s, t ,mi ), f (s, t ,mi )|s→∞ ∼ sa

with a < −2
• Then, for fixed t∗

f (s, t∗) =

∫
dv

v − s
f (v , t∗)

=

∑
i

r [t]s=m2
i

(t + 2m2
i )

(s −m2
i )(s + t + m2

i )
+

r [t]s=0

s(−s − t)t


as s >> 0 this is just a polynomial in t , yet must contain poles in t infinite higher
spin !



General solution:

M(s, t) = 〈12〉4[34]4f (s, t ,mi ) = 〈12〉4[34]4
n(s, t)∏∞

i=1(s −m2
i )(t −m2

i )(u −m2
i )

Let

n(s, t) ∼
∏
{i,j}(s + m2

i + m2
j )(t + m2

i + m2
j )(u + m2

i + m2
j )

stu
∏

i (s −m2
i )(t −m2

i )(u −m2
i )

We’re done, this is string theory!



Massless residues controlled by the interaction of three massless particles← highly
constrained!

One only has R, R2φ, R3. This implies that the massless residue, for s = 0, must be

t
( )1

t

R R
R R2 2

3 3

On the other hand the massless residue of our ansatz is

M(s, t)|s=0 ∼ 〈12〉4[34]4

∏
{i,j}(m2

i + m2
j )(t + m2

i + m2
j )(−t + m2

i + m2
j )∏∞

i=1(m2
i )(t −m2

i )(t + m2
i )

We must have for any two pair of {i, j} there exists an m2
k such that m2

i + m2
j = m2

k

m2
i =

1
α′
{1, 2, 3, · · · }



m2
i =

1
α′
{1, 2, 3, · · · }

We thus find a simple solution:

M(s, t) =
〈12〉4[34]4

stu

∞∏
i=1

(s + i)(t + i)(u + i)
(s − i)(t − i)(u − i)

= 〈12〉4[34]4
Γ[1− t]Γ[1− s]Γ[1− u]

Γ[1 + t]Γ[1 + s]Γ[1 + u]

This is nothing but the closed superstring amplitude!

In fact this is the universal piece in all perturbative string completion:

Super f (s, t) =
Γ[1−s]Γ[1−u]Γ[1−t]
Γ[1+s]Γ[1+u]Γ[1+t]

(
−1
stu

)
Heterotic f (s, t) =

Γ[1−s]Γ[1−u]Γ[1−t]
Γ[1+s]Γ[1+u]Γ[1+t]

(
−1
stu

+
1

s(1+s)

)
Bosonic f (s, t) =

Γ[1−s]Γ[1−u]Γ[1−t]
Γ[1+s]Γ[1+u]Γ[1+t]

(
−1
stu

+
2

s(1+s)
−

tu
s(1+s)2

)
Each additional term corresponds to the presence of R2φ, R3.



Does this mean perturbative string is the only solution?

Not yet

Consider the following deformation:

Γ[−s]Γ[−t]Γ[−u]

Γ[1 + s]Γ[1 + t]Γ[1 + u]

(
1 + ε

stu
(s + 1)(t + 1)(u + 1)

)
Consistent for 0 < ε < 1!



Does this mean perturbative string is the only solution?

Not yet

Consider the following deformation:

Γ[−s]Γ[−t]Γ[−u]

Γ[1 + s]Γ[1 + t]Γ[1 + u]

(
1 + ε

stu
(s + 1)(t + 1)(u + 1)

)
Consistent for 0 < ε < 1!



We’ve seen this before:

• In the early days there was the Lovelace-Shapiro model with intercept α0 = 1
2 that

gave a consistent four-point amplitude, but no n-pt generalisation was found
• From a particle theorist point of view, this is bizarre!

• The four-point amplitude tells us the rules for and , what could be
wrong?















For non-perturbative completion, what can one possibly say?



In a EFT we have an infinite set of irrelevant operators

LEFT = Lmarginal +
∑

i

ciOi (∂, φ)

In general ci → ci (g,N)

• For non-lagrangian theories ci is simply a number!
• For theories with S-duality, ci (g,N) is constrained
• With SUSY some ci are determined exactly

How much constraint can we impose in the IR on LEFT ?



If the low lying degrees of freedom are GB→ non-linearly symmetry

• How do we use the non-linear symmetry to constrain the EFT?
• Is there a systematic way to proceed with arbitrary symmetry breaking (internal

and spacetime)?
• Are non-linear symmetries protected against quantum corrections?



Soft theorems

The D.O.F. for LEFT are Goldstone bosons→ Adler’s zero

Mn(π1 · · · )|p1→0 = 0

Mn M
0
n=

eθG|0〉 = |θ〉, M0
n ≡ 〈0| · · · |0〉

Mθ
n ≡ 〈θ| · · · |θ〉 = M0

n + M0
n+π + M0

n+π+π + · · ·

The U(1) goldstone bosons are derivatively coupled: L(∂φ) (Non-abelian extension
see I. Low 14)



Soft theorems

Space-time symmetry breaking are different

• The generators have non-trivial commutator with P

[P,K ] ∼ D

The Goldstone modes of the broken generators are derivatively related One
dilaton

• For sCFT, there will be associated broken internal symmetries pions

There are multiple Goldstone modes for spontaneous space-time symmetry breaking

What does this imply for the effective action?



Soft theorems

Ward identity

∂µ〈Jµ(x)φ(x1) · · ·φ(xn)〉 = −
∑

i

δ(x − xi )〈φ(x1) · · · δφ(xi ) · · ·φ(xn)〉

Spontenous symmetry breaking implies Jµ|0〉 = pµ|phys〉

• LHS: performing LSZ reduction on i = 1, · · · , n→ Mn(π1 · · · )|p1→0 = 0

• RHS:
{

= 0 if δφ 6= |phys〉
6= 0 if δφ = |phys〉

Conventional spontaneous symmetry breaking: δφ = constant hence Adler’s zero



Soft theorems

Spontaneous broken dilation and conformal boost generator leads to single dilaton,

[K ,D] ∼ K

The dilaton transforms linearly under the broken generator→ non-vanishing soft-limits:
Boels, Wormsbecher, Y-t Wen, Di Vecchia, Marotta, Mojaza, Nohle

Mn
∣∣
pn→0 =

(
S(0)

n + S(1)
n

)
Mn−1 +O(p2

n) ,

(S(0)
n ,S(1)

n ) are universal soft functions

S(0)
n =

n−1∑
i=1

(
pi ·

∂

∂pi
+

d − 2
2

)
− d ,

S(1)
n = pµn

n−1∑
i=1

[
pνi

∂2

∂pνi ∂pµi
−

piµ

2
∂2

∂piν∂pνi
+

d − 2
2

∂

∂pµi

]
.



Soft theorems

There’s more! In general CFTs with scalar moduli space has “flavor” symmetry, which
will be spontaneously broken along with conformal symmetry→ pions

Exp: N = 4 SYM on Coulomb branch, 6 massless scalars (1 dilaton ϕ, 5
SO(6)→SO(5) GBs φI )

An(φ1, · · ·, φI
n)
∣∣
pn→0 =

∑
i

An−1(· · ·, δIO, · · ·)+O(p1
n) .

where δIϕ = φI and δIφJ = −δIJϕ.



Soft theorems

The soft theorems should be respected

• In the UV where massive D.o.F are present
• In the IR where massive D.o.F integrated away perturbatively
• In the IR where massive D.o.F integrated away non-perturbatively

Let’s check



Perturbative Verifications

The one-loop effective action of N = 4 SYM on the Coulomb branch, up to six fields

+ +

Derived from the integrand of SYM in D-dimensions (scalars: ε · ki = 0, ε · ` = m for ϕ,
ε · ` = 0 for φI )

LSU(4) singlet
1−loop =

g4N
32m4π2

(
OF4 +

OD4F4

23×15m4
−

2OD2F6

15m6
+
OD4F6

23×21m8
−

OD6F6

2×152m10
+ · · ·

)

LSp(4)
1−loop =

∂4ϕ4

16m4
+

∂8ϕ4

960m8
+
∂4ϕ5

4m6
+

∂8ϕ5

480m10
−

5∂4ϕ6

4m6

−
∂8ϕ6

480m10
+

∂10ϕ6

21035m12
+

∂12ϕ6

21132m14
+
∂4ϕ2φ′2

8m4
−

5∂4ϕ2φ′4

4m6
+
∂4ϕ4φ′2

4m6
+ . . .



Perturbative Verifications

All soft theorems are satisfied



Non-Perturbative Verifications

The instanton effective action of N = 4 SYM on the Coulomb branch, Massimo, Morales,

Wen

S1−inst
eff = c′

g4

π6
e2πiτ

∫ d4x d8θ
√

det4N 2Φ̄Au,Bv√
det2N

(
ΦABΦ̄AB + 1

g F̄ + 1√
2g

Λ̄A(Φ−1)ABΛ̄B

)
α̇u,β̇v

.

The N = 4 on-shell superfields can be expanded in terms of the component fields
{φAB , λA

α,F
−
αβ}. For just the scalars,

Φ̄AB = φ̄AB , Λ̄Aα̇ = i θBα∂αα̇φ̄AB , F̄α̇β̇ =
1
2
θAαθBβ∂αα̇∂ββ̇ φ̄AB

We obtain simple dilaton effective action

,



Non-Perturbative Verifications

But horrific vertices when expanded around ϕ→ v + ϕ

All soft theorems are satisfied



Constraints on effective action

Using the fact that S-matrix are analytic functions, we start with: Britto, Cachazo, Feng, Witten

An(0) =

∮
|z|=0

dz
An(z)

z
= −

∮
|z|=z∗

dz
An(z)

z
,

z

The constraint from soft-theorems can be utilized via augmented recursion:Cheung,

Kampf, Novotny, Shen, Trnka

An(0) =

∮
|z|=0

dz
An(z)

zF (z)
= −

∮
|z|=z∗

dz
An(z)

zF (z)
−
∮
|z|=z∗

dz
An(z)

zF (z)
,

z



Constraints on effective action

Take

A(z) = A|pi→(1−zai )pi
, Fn(z) =

n∏
i=1

[(1− zai )]di

with
∑

i ai pi = 0

An(0) =

∮
|z|=0

dz
An(z)

zF (z)
= −

∮
|z|=z∗

dz
An(z)

zF (z)
−
∮
|z|=z∗

dz
An(z)

zF (z)
,

z

The residue of F (z) is determined

A(z)→ A0 + A1q + A2q2 + · · ·Ad qd−1

where q = (1− zai )pi



Constraints on effective action

The residue of F (z) is determined

A(z)→ A0 + A1q + A2q2 + · · ·Ad qd−1

Since for the pure dilaton sector

Mn
∣∣
pn→0 =

(
S(0)

n + S(1)
n

)
Mn−1 +O(p2

n) ,

we have d = 2.
The pure dilaton amplitude can be constructed using recursion

An(0) =

∮
|z|=0

dz
An(z)

z
∏

i (1− zai )2

The denominator ∼ z2n, while An(z) ∼ z2m for order ∂2m → we need n > m



Constraints on effective action

The pure dilaton sector is highly constrained:

sn \ # of points 4 5 6 7 8 · · ·
2 × X X X X X
3 × X X X X X
4 × X X X X X
5 X × X X X X
6 X X × X X X
7 X X X × X X
8 X X X X × X
... · · · · · · · · · · · · · · · · · ·

At sn, the EFT is determined up to coefficients for operators ∂2nϕn



SUSY Constraints on effective action

Maximal SUSY is known to give exact results:

• s2: F 4 operator one-loop exact λ =
(

g4N
8π2m4

)
• For the pure field-strengths Chen, Y-t, Wen

There are no local susy matrix elements that encode F 2
−F n−2

+ →must have zero
coefficient

F
4

F
4

F
6

One obtains an exact recursion formula



SUSY Constraints on effective action

Assume D=4 maximal susy

• s2: F 4 operator one-loop exact λ =
(

g4N
8π2m4

)
• s3: A(3)

4 = A(3)
5 = 0, and the first non-zero would be A6

A(3)
6 = a1(s3

12 + P6) + a2(s3
123 + P6)

+ λ2
(

(s2
12 + s2

13 + s2
23)

1
s123

(s2
45 + s2

46 + s2
56) + P6

)
soft theorem fixes a1 = 0 , a2 = −λ2 → A(3)

n is two-loop exact

Up to six-derivatives, the effective action is identical to DBI in AdS5 × S5



SUSY Constraints on effective action

• s4: Recursion determines all n > 4 in terms of the four-point∑
m≤8

L∂mφn = δm,8 c(2)
4 (g,N)L`=1

∂8φn +
∑
m≤8

LDBI
∂mφn ,

• s5:

P(3)
4 (sij ) = c(3)

4 (g,N)× (s3
12 + P4) , P(3)

5 (sij ) = c(3)
5 (g,N)× (s3

12 + P5) .

Soft theorem determines c(3)
5 (g,N) = −c(3)

4 (g,N)

L∂10φn = c(3)
4 (g,N)L`=1

∂10φn + λ× c(2)
4 (g,N)L`=2

∂10φn + LDBI
∂10φn ,

Maximal SUSY fixes the effective action up to 10 derivatives in terms of two unknown
coefficients



Scale vs Conformal symmetry

Mn
∣∣
pn→0 =

(
S(0)

n + S(1)
n

)
Mn−1 +O(p2

n) ,

S(0)
n =

n−1∑
i=1

(
pi ·

∂

∂pi
+

d − 2
2

)
− d ,← Dilatation

S(1)
n = pµn

n−1∑
i=1

[
pνi

∂2

∂pνi ∂pµi
−

piµ

2
∂2

∂piν∂pνi
+

d − 2
2

∂

∂pµi

]
← Conformal Boost .

“To what extent does the sub-leading soft theorem, due to broken conformal boost
symmetry, follow from the leading behaviour stemming from broken dilation symmetry?”

• To all order in derivative coupling, the five point matrix elements satisfying leading
soft automatically satisfies subleading soft theorems.

• At s3, we can construct a local polynomial s3
12 − 2s12s13s23 + P6 at six-points,

which vanish at leading, but no subheading soft-limit not conformal

L = (dφ)2 + (dv)2 + gφ2vµvµ



Current and future directions

• Detailed study of consistent massive interactions, under unitarity+locality
• S-matrix boot-strap: for s, t < 0

∑
i,L

c2
i,LPL(cos θ)

s −m2
i

=
∑
i,L

c2
i,LPL(cos θ)

t −m2
i

can we prove that the spectrum can be organised as m2
i = i

α′j

• Mysteries for double soft-limits, [Gi ,Gj ] = fij k Gk :
DBI is a truncation for conformal DBI, yet two soft theorems are completely
different.

• Are soft theorems valid for UV divergences ? First one-loop 6-pt test agrees for
A-V theory

• What rules out scale but not-conformal invariant theories (identified operators that
signal non-unitarity in UV)


